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An algebraic second-moment closure with rotational stress-producing terms embodied is 
employed in a numerical study of developing flow in the entrance region of a rotating 
channel. The results of the computations are compared with measurements of Koyama 
and Ohuchi. Reasonable agreement with their data is observed along the stabilized suction 
side, whereas deviations at the destabilized pressure side are ascribed to the presence of 
longitudinal vortical structures in the laboratory channel. 
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Introduction 

Turbulent flows in rotating frame of references are frequently 
encountered in industrial and geophysical applications. Among 
the many engineering applications are the flow through coolant 
channels in the rotor of electrical machines and in the rotating 
passages in turbomachinery equipment, as well as the boundary 
layers on helicopter rotor blades. Because the engineering 
approach to fluid flow calculations in the foreseeable future will 
be based on the Reynolds-averaged Navier-Stokes equations, 
the success of computerized flow analysis relies heavily on the 
turbulence closure model embodied in the actual software. 
Unfortunately, the widely used k -  e model, like any other 
turbulence model based on Boussinesq's eddy viscosity 
hypothesis, is unable to mimic the experimentally observed 
effects of the Coriolis forces on the turbulence field. 
Second-moment closures derived from the exact transport 
equations for the individual Reynolds stress components are, 
conversely, automatically accounting for body forces resulting 
from buoyancy, curvature and system rotation. Launder et al. 
(1987), for instance, computed the fully developed flow in a 
plane channel rotating in orthogonal mode and reproduced the 
main effects of rotation observed experimentally. Launder et 
al. (1987) applied a differential Reynolds stress model (RSM) 
in their study, whereas the present authors (Andersson and 
Nilsen 1989) derived an algebraic stress model (ASM) for 
rotating flows, which represents a compromise between RSM 
closures and two-equation transport models of the k - e type. 
This ASM model, which explicitly includes Coriolis-force 
terms, is based on the principle of material frame-indifference 
addressed, for instance, by Thomas and Takhar (1988). The 
model has recently been applied by Nilsen and Andersson 
(1990) to compute the turbulent flow over a backward-facing 
step in spanwise rotation. 

The objective of the present study is to demonstrate the 
performance of the frame-invariant ASM closure in a 
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computation of the flow in the entrance region of a plane 
channel in spanwise rotation. The developing wall boundary 
layers and the potential core will be computed simultaneously 
with an elliptic solver, thereby providing a more general 
treatment than the parabolic boundary layer approach adopted 
by Masuda et al. (1983), in which the velocity distribution in 
the free stream was prescribed in accordance with measured 
velocity data. Comparisons will be made with experimental 
data of Koyama and Ohuchi (1985). 

Mathematical  modeling 

The problem considered is that of steady, incompressible and 
fully turbulent flow between two parallel walls in spanwise 
rotation, as schematically shown in Figure 1. The Reynolds- 
averaged equation governing the transport of mean momentum 
is expressed in a rotating Cartesian frame of reference as 

P &(UJ Ui~)-(~xj (~x i &P + _ . . j ,  OUi-Pu"~J)  t~x---~j (1) 

subject to the continuity constraint dUJdxt = O. 
An algebraic model for the unknown Reynolds stresses 

-puiu'-'--~ is obtained from a transport equation for the 
second-moments u~uj 

Cij = Gij + Dij + q~ij - eli (2) 

where the various physical processes tending to change uitij 
are represented symbolically. Following Andersson and Nilsen 
(1989), a frame-invariant formulation of the convective 
derivative 

Du, uj ½Rjj (3) 
Cjj = Dt 

is adopted, in accordance with the principle of material 
frame-indifference as discussed by Thomas and Takhar (1988). 
Hence, with half of the rotational stress generation RIj assigned 
to the convective derivative, the Coriolis contribution to the 
total stress generation is correspondingly reduced, that is, 

-~R Gij = Pij .~L 2 ij (4) 

Rodi (1976) demonstrated that the differential equation 
(Equation 2) can be converted into an algebraic model 
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F/gure I Schematic of flow configuration and coordinate system 

expression if the net transport of ~ is assumed to be 
proportional to the net transport of the mean turbulent kinetic 
energy k. A generalization of Rodi's hypothesis to flows subject 
to system rotation was proposed more recently by Andersson 
and Nilsen (1989): 

BiB j Uit4j 
Cij --  Dij = ~ -  (Ckk --  Dkk) = ~ (Pkk --  ~kk) (5) 

where the latter equality follows from contraction of the 
indices in Equation 2, recognizing that ~bkk = Rkk = 0. 

Finally, the dissipation rate eij of the Reynolds stresses is 
assumed to be locally isotropic, whereas the pressure--strain 
correlation ~b~j is split into three different parts and modeled 
separately. Following Launder et al. (1987), the linear 
return-to-isotropy model is retained for the purely turbulent 
interactions, whereas interactions of mean strain and rotation 
with fluctuating quantities are approximated by a rotating-flow 
version of the isotropization-of-production model. The effect 
of turbulent pressure reflections from the walls, that is, ~p~, 
is also modeled in accordance with Launder et al. (1987). 

With these modeling assumptions introduced in Equation 2, 
the original differential equation can be expressed in algebraic 
form as 

---- - -  --  ~61jPkk "~" (~ij (6) Ui U"-- ~ 2(~ij (1 C2XPij 1 ½Rij ) ..[. w 

k 3 ½Pkk + ~(C1 - 1) 

where the constants C~ and C2 take the values 1.8 and 0.6, 
respectively. It is noteworthy that the original ASM model from 
Rodi (1976) is recovered in the nonrotating case if the 
wall-correction 0~ is neglected. Moreover, according to 
common practice, the mean kinetic energy of the turbulence, 
k, and its dissipation rate, 8, appearing in the ASM model 
(Equation 6) are obtained from their own transport equations. 
It is important to notice that there are no explicit influences of 
rotation in these differential equations for k and ~. 
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The numerical calculations reported herein were made with 
an adapted version of the elliptic finite-volume solver 
TEAM-ASM described by Huang and Leschziner (1983). The 
ASM model (Equation 6) was implemented consistently with 
the stability-promoting measures discussed by Huang and 
Leschziner (1985). Nevertheless, fairly strong underrelaxation 
of the Reynolds stress components was required in the iterative 
matrix solver to achieve converged solutions. 

The ASM-model (Equation 6) is not applicable directly into 
the walls, and the wall-function approach was therefore 
adopted to bridge the near-wall sublayer. Inlet boundary 
conditions were prescribed in accordance with measured 
distributions of U and u 2, whereas fully developed flow 
conditions were imposed at the outflow boundary. However, 
to ensure parallel streamlines at the outlet, the length of the 
calculation domain was three times the length of the 
experimental test section (i.e., 2,000 mm rather than 670 ram). 

N u m e r i c a l  r e s u l t s  and  d i s c u s s i o n  

Calculations were carried out for two different cases with the 
bulk mean velocity Um= 10m/s, namely, f~ = 0rad/s  and 
f~ = - 1 0  rad/s (i.e., - 3 0 0  rpm). The results to be presented 
herein are for the latter case, which characterizes by a bulk 
Reynolds number R e =  11,800 and a rotation number 
R e = - 0 . 1 2 .  The rectangular calculation domain, with 
dimensions 2,000mm x 40mm, was divided into 90 x 32 
cells. Because f~ < 0, the two channel walls at y = 0 and 
y = 40 mm are becoming the suction and pressure sides, 
respectively. 

Computed profiles of the mean velocity U and the 
streamwise turbulence intensity (u2) 1/2 at three different 
streamwise positions are presented in Figures 2 and 3, 
respectively, whereas the streamwise variation of the friction 
velocity U.  is shown in Figure 4. The numerical results are 
compared with experimental findings of Koyama and Ohuchi 
(1985). A hot-wire system was used for the measurements of 
the mean velocity and the Reynolds stresses in the straight test 
section (aspect ratio 7:1) of their rotating wind tunnel, and a 
Preston tube was used to obtain the wall shear stress. 

It is readily observed from the displayed results that the 
boundary layers along the channel walls thicken in the 
streamwise direction at the expense of the shrinking potential 
core. The predicted growth of the boundary layers is, however, 
somewhat underestimated in comparison with the experimental 

N o t a t i o n  

C1, C2 
Ctj 
Dtj 
Glj 
H 
k 
P 

Plj 

Rlj 
Re 
Re 
UiUj 
U~ 

Ui 
Um 
U. 
Xi 
X, y 

model constants 
convection of Reynolds stresses 
diffusion of Reynolds stresses 
total production of Reynolds stresses 
channel half-width 
mean turbulent kinetic energy, u-~.J2 
reduced pressure, p - pf12xixJ2 c$i~ 

mean shear production, - ~ Ox--~k + ujuk C~Xk/ ei j 

(~ijk 
rotational production, --2~k[UjUm¢ik m + UiUm~jkm] p 
Reynolds number, pU=H/I~ p 
rotation number, 2Ht3VU m ~w 
kinematic Reynolds stress 0u, 0~J 
centerline velocity 

mean velocity component in xi-direction 
bulk mean velocity 
wall friction velocity, (Zw/p) 1/2 
Cartesian coordinate 
coordinates defined in Figure 1 

Greek letters 

Kronecker delta 
energy dissipation rate, ~ir/2 
dissipation rate tensor, 26tf/3 
Levi-Civita symbol 
dynamic viscosity 
density 
shear stress at the wall, #~U/ayJw 
pressure-strain model 
angular velocity 
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Figure 2 Profiles of streamwise mean velocity component U at 
three different locations for Re = -0.12; computed results (lines) 
are compared with experimental data (symbols) of Koyama and 
Ohuchi (1985) 
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Figure 3 Profiles of streamwise turbulence intensity u' = (u~) 1/2 
at three different locations for Re = - 0.12 (legend as in Figure 2) 

data. It may be worthwhile to mention that, according to the 
computations, the wall boundary layers tend to the merge at 
about x = 800ram and, eventually, fully developed flow 
conditions are established downstream of x = 1,500 mm. This 
observation suggests that the flow at the downstream 
measuring station (x = 500mm) is far from being fully 
developed. 

More interestingly, perhaps, is the striking difference in the 
growth of the two boundary layers. The promoted boundary 
layer development along the pressure side contrasts with the 
suppressed growth at the suction side. This striking effect of 
the Coriolis force is, at least qualitatively, reproduced in the 
computer simulation. However, the results compare more 
favorably with the experimental data along the suction side 
than near the pressure wall. This can be ascribed to the 
experimentally observed counter-rotating Taylor-G6rtler-like 
vortices on the pressure side, which cannot be reproduced by 
a two-dimensional mathematical model. Obviously, highly 
turbulent fluid is being conveyed from the pressure side and 
out into the center by these unsteady vortical roll-cells, whose 
motion also contributes directly to the measured turbulent 
stresses, thereby explaining the significant discrepancies in the 
upper half of Figure 3. This particular issue has recently been 
addressed in some detail by Kristoffersen and Andersson 
(1993). 

The differing boundary layer development along the two 
walls is obviously associated with the difference in the 
turbulence levels near the stabilized suction side and the 
destabilized pressure side. However, according to the change 
of sign of the rotational production R1, ~ 4f/~'~ across the 
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Figure 4 Streamwise variation of the wall friction velocity Uo for 
Re = -0.12 (legend as in Figure 2) 

channel, just the opposite behavior should have been expected. 
The observed effect of system rotation on u ~ is therefore a._n 
indirect one, which stems from rotational production of v 2. 
Because R22 = - -Rl l ,  negative rotation tends to reduce v 2 
near the suction side with a corresponding enhancement at 
the pressure side. These changes in v -'z, and accordingly in the 
magnitude of the mean shear production P12 "~"-~~ - v  OU/Oy 
and ~'~, indirectly result in corresponding changes in the mean 
shear production PII "~-2~'~OU/Oy and thus in ~ .  The 
observed results in Figure 3 th__erefore suggest that the direct 
rotational contribution to u 2 by means of R tl is far 
outweighed by the indirect changes in Ply. 

Conclus ion 

The promoted boundary layer development along the 
destabilized pressure side and the suppressed growth at the 
stabilized suction side of a rotating channel have been 
reproduced, at least qualitatively, by the generalized ASM 
closure for Re = -0.12. At this particular rotation number, 
the overall influence of the Coriolis force is ascribed to the 
indirect influence of the rotational generation of the transverse 
stress component ~ .  
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